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Abstract: The Earth Observing One (EO-1) satellite has completed 16 years of Earth observations 18 
in early 2017. What started as a technology mission to test various new advancements turned into 19 
a science and application mission that extended many years beyond the satellite’s planned life 20 
expectancy.  EO-1’s primary instruments are spectral imagers: Hyperion, the only civilian full 21 
spectrum spectrometer (430-2400 nm) in orbit; and the Advanced Land Imager (ALI), the 22 
prototype for Landsat-8’s pushbroom imaging technology.  Both Hyperion and ALI instruments 23 
have continued to perform well, but in February 2011 the satellite ran out of the fuel necessary to 24 
maintain orbit, which initiated a change in precession rate that led to increasingly earlier 25 
equatorial crossing times during its last five years.  The change from EO-1’s original orbit, when 26 
it was formation flying with Landsat-7 at a 10:01am equatorial overpass time, to earlier overpass 27 
times results in image acquisitions with increasing solar zenith angles (SZAs). In this study, we 28 
take several approaches to characterize data quality as SZAs increased. Our results show that for 29 
both EO-1 sensors, atmospherically corrected reflectance products are within 5 to 10% of mean 30 
pre-drift products. No marked trend in decreasing quality in ALI or Hyperion is apparent through 31 
2016, and these data remain a high quality resource through the end of the mission. 32 

Keywords: EO-1; Hyperion; Advanced Land Imager; ALI; Precession; Solar Zenith Angle; data 33 
quality; Landsat-7  34 

 35 

1. Introduction 36 
High quality data are of utmost importance for scientific studies and measurement stability 37 

over time is critical to evaluate seasonal, annual, and decadal changes [1]. In satellite remote 38 
sensing, analysts need to be sure that the imagery comes from well calibrated and characterized 39 
sources and the EO-1 satellite is no exception.  40 

EO-1 was launched on November 21, 2000 as a one-year technology validation and 41 
demonstration mission. EO-1, at 572 kg total mass, approaches the smallest (< 500 kg) class of 42 
spacecraft. It was initially tasked with testing advancements that could potentially increase sensor 43 
performance while reducing instrument mass, power consumption, and cost. The three primary 44 
instruments on the EO-1 spacecraft were designed to acquire visible through near-infrared (VNIR) 45 
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and shortwave infrared (SWIR) wavelength information in the solar reflected spectrum [2]. These 46 
are the Advanced Land Imager (ALI), the Hyperion, and the Linear Etalon Imaging Spectrometer 47 
Array (LEISA) Atmospheric Corrector (LAC), which is not discussed further in this contribution.  48 

EO-1 demonstrated that its 8-band multispectral (MS) imager, ALI, provides a significant 49 
improvement over the Landsat 7 Enhanced Thematic Mapper plus (ETM+) and previous Landsat 50 
Thematic Mapper (TM) instruments due to increased signal to noise ratio, while decreasing 51 
instrument size and weight. EO-1 also validated the scientific value of orbital imaging spectroscopy 52 
with Hyperion, the first spaceborne hyperspectral land imaging instrument. EO-1 also 53 
demonstrated that a moderate-spatial/high-spectral resolution imager could be used in 54 
self-correction of atmospheric effects to retrieve the apparent surface reflectance from top of 55 
atmosphere (TOA) radiances, and systematic errors [3]. It was originally thought that these new 56 
technologies could improve the TM/ETM+ sensor series found on the Landsat 4 - 7 satellites [4,5] 57 
and indeed, some of these technologies were utilized for the Landsat 8 Operational Land Imager 58 
(OLI) sensor launched in 2013, with, for example, the adoption of the push-broom style sensor and 59 
improved quantization [6,7].   60 

With no indication of sensor degradation through the end of the one-year baseline mission in 61 
2001, the EO-1 mission was extended, allowing ALI and Hyperion to continue collecting images [3].  62 
The mission was chartered to collect and distribute ALI MS and Hyperion hyperspectral products 63 
in response to Data Acquisition Requests (DARs), which were soon established as a collaboration 64 
with the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Data 65 
Center (EDC).  There were four extensions of the mission [8], during which normal operations 66 
continued and the daytime imagery were used in numerous science investigations [9] ranging from 67 
characterizing forest structure [10-12], water quality [13,15] and desert dust flows [16], to disaster 68 
monitoring activities [17-19].  Additionally, the nighttime imagery was greatly utilized by the 69 
volcano monitoring network [20,21].  70 

1.1. Orbital Precession Rate Change 71 
From 2001 to 2007, EO-1 was flying in orbital formation with Landsat 7 (one minute behind). In 72 

late 2007 EO-1 began a de-orbit procedure, but barely a month into the process NASA gave EO-1 a 73 
re-entry waiver, and all remaining fuel was used to maintain the current orbit, which by then was 74 
slightly (~5 km) lower than Landsat 7. In 2011 EO-1 ran out of maneuvering fuel and the orbital 75 
degradation began, with a slowly changing rate of precession leading to increasingly earlier ground 76 
overpass times (Figure 1). A second waiver was issued for EO-1 to continue operations to study the 77 
effects of changes in precession on data quality. 78 

In 2011, EO-1 lost its ability to maintain an exact sun synchronous precession orbit when the 79 
satellite depleted its onboard maneuvering fuel and could no longer make corrective “inclination 80 
burns”. EO-1’s orbital plane is still precessing, but not at the rate required to achieve precise Sun 81 
synchronicity, resulting in nadir observation times drifting towards earlier local overpass times. 82 
The implication for this is that specific targets are now viewed under different illumination 83 
conditions per month of the year, as compared to earlier phases of the mission (Figure 2).  84 

Solar zenith angle (SZA) depends on local overpass time, latitude, and date. The earlier 85 
overpass times experienced in the last few years of the mission result in larger SZAs. However, 86 
these values of SZAs have already been experienced by EO-1 for imagery collected at different 87 
latitudes and seasons. As can be seen in Figure 3, approximately 60% of the time in 2016 the SZAs at 88 
EO-1 overpass times were within the previously experienced range of SZAs for that latitude. 89 

 90 
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Figure 1. EO-1 changes in precession rate started in 2011. Acquisition time at the Railroad Valley 92 
Playa declined from 10:12 to 8:14, reaching 8 AM in October, 2016. The stability of the overpass time 93 
from 2001 to 2008 is shown (within dotted box), for nadir views (open circles) as well as off-nadir 94 
views (filled circles). A 15 minute change in overpass time is indicated within ellipse, after EO-1 left 95 
the Landsat-7 formation. The decline of overpass time is indicated by the downward arrow, after 96 
onboard fuel was expended. 97 

 98 
Figure 2. Solar zenith angles (SZAs), measured in degrees, of daytime Hyperion images. Due to the 99 
earlier acquisition times for the imagery, the distribution of SZAs at overpass times during 2015 100 
shifted to larger values (red bars) than during the earlier normal mission operations (blue bars). 101 
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Figure 3. Solar Zenith Angles (SZAs) at EO-1 overpass time showing the effect of changing seasons 103 
and latitudes on SZAs as overpass time drifts to earlier times (colored lines, the colors indicating the 104 
latitude of the observation as shown in the legend). The blue shaded region shows SZAs at various 105 
latitudes during nominal operations, compared to SZAs experienced in 2016 (orange shaded 106 
region). 107 

There are several potential impacts of changing orbital precession (also referred to as “drift” or 108 
“decay”) [22]: 109 

1. Larger SZAs due to the sun being closer to the horizon may reduce the quality of the signal 110 
by having weaker irradiances and a longer atmospheric path for radiances to traverse, 111 
which decreases the signal to noise (SNR) ratio of the data and complicates atmospheric 112 
correction procedures. 113 

2. There is a change in the number of instances of cloudy data, which might be expected to 114 
increase in temperate zones as early morning haze is more often present and to decrease in 115 
tropical zones where convective clouds dominate [23]. 116 

3. The bi-directional reflectance distribution function (BRDF) of the data changes as the 117 
influence of shadows increases in concert with the illumination angles, and somewhat 118 
larger footprints are viewed. [24] 119 

Understanding these effects of changing overpass times helps future mission planners to 120 
evaluate overpass times for sun synchronous missions as well as understanding the issues involved 121 
with integrating data from multiple satellites with different overpass times as proposed in future 122 
actual and virtual constellations. EO-1 became a natural experiment in this problem providing 123 
unique opportunities to evaluate these questions due to its long time series to which comparisons 124 
can be made.   125 

Here, we examine quality and stability of the daytime imagery acquired by two EO-1 sensors 126 
to determine the effect of orbital precession on data products with changing SZAs and footprints in 127 
areas with different surface characteristics. We used multiple approaches in several locations with 128 
varying surface properties to highlight different aspects of the effects of EO-1’s changing precession 129 
over time. We selected three vegetation sites and two Committee on Earth Observing Satellites 130 
(CEOS) Pseudo Invariant Calibration Sites (PICS) to evaluate data quality and stability changes.  131 

2. Data and Methods  132 

2.1 EO-1 Instrument Characteristics 133 

2016 

Nominal 
10am 

overpass 
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The EO-1 ALI is an 8-band MS imager having a 15° Wide Field Telescope (WFT) and a partially 134 
populated focal plane occupying 1/5th of the field-of-view, giving a ground swath width of 37 km. 135 
Hyperion is a grating imaging spectrometer with a 7.7 kilometer swath and it provides 220 136 
functional bands with an approximately 10 nm sampling interval from 430-2400 nm [3]. Both ALI 137 
and Hyperion have 30 m nadir ground pixels to match Landsat-7. All collected data are archived 138 
and distributed by the USGS/EROS data center [25]. 139 

2.2 Study Methods 140 
Five different study sites were selected to evaluate the impacts of precession on surface 141 

reflectance from Hyperion and ALI at different latitudes and land cover types to characterize sensor 142 
performance (Table 1). It would have been desirable to have more test sites in differing regions of 143 
the world, but it was difficult to find time series data, which was needed to show effects of 144 
changing precession over time. This was because EO-1 was never conceptualized to be a robust 145 
repeat sensor.  For this reason, several of our selected sites were PIC sites.  146 

 147 
1) Park Falls, Wisconsin: The Normalized Difference Vegetation Index (NDVI) [26,27] 148 

obtained from ALI TOA reflectance was compared with that from Landsat NDVI, and 149 
an NDVI difference was computed for a mixed forest site in multiple years;  150 

2) Howland Forest, Maine: The NDVI obtained from Hyperion surface reflectance was 151 
compared to the NDVI obtained with the Moderate Resolution Imaging 152 
Spectroradiometer (MODIS) for an experimental mixed forest, in multiple years; 153 

3) U.S. Department of Agriculture/Beltsville Agriculture Research Center (USDA/BARC) 154 
in Beltsville, Maryland: The temporal change in the Hyperion surface reflectance was 155 
evaluated using 1st derivative analysis, in an agriculture site over multiple years; 156 

4) Rail Road Valley Playa (RRVP), Nevada: For a Pseudo-Invariant Calibration Site (PICS), 157 
a Hyperion surface reflectance time-series was evaluated for a bright desert target site; 158 
and 159 

5) The Libya-4 PICS, Libya: Statistical evaluation of the change in surface reflectance 160 
obtained in different spectral intervals and over time was evaluated using a dense 161 
Hyperion surface reflectance time-series for a bright desert target site. 162 

Table 1.  Dominant land cover types and Northern Hemisphere study site locations used in 163 
analyses  164 

Site	Name	 Central	Coordinates	(longitude,	latitude)	 Dominant	Land	Cover	

Park	Falls,	Wisconsin	 90.18°	W,	45.58°	N	 Mixed	hardwood	forest	
Howland	Forest,	Maine	 68.5°	W	,45.21°	N	 Mixed	coniferous	forest	
BARC1,	Maryland	 76.85°	W,	39.03°	N	 Evergreen,	Corn	Field	
RRVP2,	Nevada	PICS	 115.69°	W,	38.5°	N	 Desert	
Libya-	4	PICS3	 24.40°	E,	28.53°	N	 Desert	

1	Beltsville	Agricultural	Research	Center,	2	Rail	Road	Valley	Playa,	3	Pseudo-Invariant	Calibration	Site	

2.2.1. Park Falls Wisconsin ‒ EO-1/ALI NDVI vs. Landsat NDVI 165 
Park Falls, Wisconsin was chosen as the study site for this experiment because of the density of 166 

EO-1 imagery available and the diversity of included land cover types. This site falls within the 167 
Worldwide Reference System (WRS) path 25, row 28. One ALI image per year from summers of 168 
2001 to 2016 were selected and a corresponding Landsat image was chosen to minimize the 169 
difference between the dates of acquisition (Table 2). For the twelve pairs of images, the cumulative 170 
delta days between all acquisitions were 19 days, averaging just 1.58 days/pair. Comparison of the 171 
spectral bandwidths (Table 3) of each sensor shows that all bands except the Near Infrared (NIR) 172 
have very similar wavelength ranges.  Sun and view angle differences also play a part in NDVI 173 
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calculation [28]. Solar zenith angle differences were minimalized as acquisitions of the comparitive 174 
scenes were all within a few days of one another so solar zenith angles were all very close. When 175 
considering view angles, Landsat images are always nadir viewing whereas EO-1 has the ability to 176 
view up to one neighboring WRS path on each side. With this in mind, the EO-1 images were 177 
selected to reduce impacts of view angle and all but one had view angles less than 7.5 degrees. The 178 
2016 ALI image had an off-nadir angle of 20 degrees, but it has been demonstrated that NDVI is not 179 
highly effected until this angle is greater than 25 [28]. 180 

Table 2. Coupled image pairs used for the Park Falls, WI analysis.  181 

Landsat 

date ALI date 

Off 

nadir 

8/17/2016 8/17/2016 20.10 

8/15/2015 8/13/2015 -0.30 

8/12/2014 8/09/2014 

              

-5.70 

9/26/2013 9/27/2013 6.10 

8/06/2012 8/05/2012 4.50 

8/20/2011 8/27/2011 -2.72 

8/17/2010 8/17/2010 -2.50 

9/23/2009 9/21/2009 -1.00 

9/12/2008 9/09/2008 5.60 

       6/30/2007        6/30/2007 -7.20 

8/11/2002 8/11/2002 3.50 

5/04/2001 5/04/2001 0.13 

 

Table 3. Wavelengths ranges per band for each ALI, TM, and ETM+ sensor 182 

 
EO-1 ALI Landsat 5 Landsat 7 

  Wavelength (µm) Wavelength (µm) Wavelength (µm) 

Pan 1 0.48 - 0.69 
 

.52-.90 
Blue' 0.43 - 0.45 

  
Blue 0.45 - 0.52 0.45-0.52 0.45-0.52 

Green 0.53 - 0.61 0.52-0.60 0.52-0.60 

Red 0.63 - 0.69 0.63-0.69 0.63-0.69 
NIR 0.78 - 0.81 0.76-0.90 0.77-0.90 

NIR' 0.85 - 0.89 
  

SWIR' 1.20 - 1.30 
  

SWIR 1 1.55 - 1.75 1.55-1.75 1.55-1.75 
TIR 

 
10.40-12.50 10.40-12.50 

SWIR 2 2.08 - 2.35 2.08-2.35 2.09-2.35 
1 Pan = Pancromatic 183 

Data for the EO-1 and Landsat sensors were downloaded from USGS in units of TOA 184 
reflectance and had radiometric and systematic geometric corrections applied to achieve a Level 185 
One Terrain corrected and ortho-rectified (L1T) image product. An NDVI product was obtained 186 
from ALI and Landsat scenes, as a normalized difference spectral index using Equation (1) [27]: 187 
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Each Landsat image was subset to the boundaries of the EO-1 ALI imagery to have exactly the 188 
same region of interest for statistical calculations.  A data cube was built with these stacked 189 
images. To establish land cover classes, the 2011 National Land Cover Database (NLCD) [29] was 190 
downloaded and overlayed onto the data stacks.  191 

For the analysis, the NDVI associated with each pixel was differenced (ALI minus Landsat) 192 
and those differences were averaged per NLCD land cover class. In our experience from visually 193 
looking at pixels with large NDVI differences, any delta NDVI between the ALI and Landsat data 194 
greater than 0.15 were most likely due to something other than sensor difference. These other 195 
differences could be from clouds, a rain event, or a land disturbance in one of the images, and we 196 
removed them from the comparison. 197 

2.2.2. Howland Forest, Maine ‒ Hyperion NDVI comparison to MODIS NDVI 198 
Three Aflux tower sites (US-Ho1: 45.20° N, -68.74° W; US-Ho2: 45.21° N, -68.74° W; and 199 

US-Ho3: 45.21° N, -68.73° W) in the Howland Experimental Forest, Maine were chosen for the 200 
analysis of Hyperion NDVI vs. MODIS NDVI, utilizing imagery collected between 2003 and 2014, 201 
with representation from all seasons. All three sites were mixed evergreen forest with a warm 202 
summer climate and significant precipitation in all seasons. The mean average temperatures are 203 
slightly over 5°C and the elevation ranged from 60 to 90m. The spatial resolution of nadir MODIS 204 
data is either 500 m or 1 km, while the spatial resolution of Hyperion data is 30 m. Thus, the 205 
reflectance values of Hyperion data have been aggregated spatially to match MODIS pixels at either 206 
500 m or 1 km resolution. To see phenology variability using the EO-1/Hyperion reflectance data 207 
product, the Hyperion NDVI data were compared with NDVI derived from MODIS by differencing 208 
the spectral pixel values.  209 

The Hyperion Level 1 GST (L1GST) product having radiometric and geometric corrections as 210 
well as a systematic terrain correction were downloaded and used for this analysis.  The Hyperion 211 
L1GST images were atmospherically corrected using the Atmosphere Removal Algorithm 212 
(ATREM) [30] [31]. Hyperion NDVI data (using Eqn. 1) were calculated from the surface reflectance 213 
using bands 27 – 32 and 49 - 54 of the L1GST product.  The NDVI data from the MODIS satellite 214 
instrument were calculated from surface reflectance in MODIS bands 1 (620 – 670 nm) and band 2 215 
(841 – 876 nm). MODIS Level 1B calibrated radiance data (MOD021KM and MOD02HKM) and 216 
geolocation data (MOD03) were downloaded from the NASA Level-1 and Atmosphere Archive & 217 
Distribution System (LAADS) [32] website. A modified gridding approach was used in this study, 218 
where the flux tower was located in the center of related 500 m or 1 km grids [33]. MODIS L1B 219 
radiance data from each swath were then gridded at 500 m or 1 km resolution for MODIS bands 1–2 220 
with appropriate area weights of each MODIS observation. MODIS data were processed by the 221 
modified gridding method and the gridded observations were atmospherically corrected by the 222 
Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm [34].  223 

2.2.3. BARC ‒ Surface reflectance at USDA site with derivative analysis 224 
To study the stability of reflectance for differing types of vegetation targets, Hyperion data 225 

acquired for the USDA BARC in Maryland were collected and used.  The Hyperion Level 1T data 226 
were acquired in the summer and fall from 2005 – 2015 and calibrated to surface reflectance by the 227 
Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) software [35] using 228 
default model parameters for typical summer/fall clear-sky atmospheric conditions. The acquisition 229 
time, sensor look angle, center location of the data and a visibility of 40 km were used as inputs for 230 
MODerate resolution atmospheric TRANsmission (MODTRAN) parameters.  231 

Derivative analysis is a powerful tool that enhances the interpretation of data. Derivatives of 232 
second order or higher should be relatively insensitive to variations in illumination intensity 233 
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whether caused by changes in sun angle, cloud cover, or topography [36]. Kalluri et al. [37] used 234 
spectral derivatives and single or multiple classifiers in land classification and achieved overall 235 
classification accuracy (expressed in percentage) that was significantly greater than was achieved 236 
when exploiting only the reflectance information. In a study by Ye et al. [38], the classification 237 
results in the spectral as well as derivative domains were fused by a logarithmic-opinion-pool rule 238 
and the results demonstrated that the algorithms improved classification accuracy even in cases 239 
with small  training sample sizes. When combined with time-series analysis, derivative analysis 240 
reveals whether the signal is consistent, regardless of seasonal factors. 241 

Derivatives are very sensitive to noise, so smoothing or minimizing random noise is important. 242 
Tsai and Philpot [36] examined several methods for smoothing of hyperspectral data. In this study 243 
the local polynomial regression fitting [39] was used to smooth the reflectance data before 244 
derivatives were calculated.  1st, 2nd, and 3rd derivatives were calculated on the Hyperion spectra 245 
(Equation 2), considering the full width at half maximum (FWHM) value of each wavelength 246 
interval. 247 

∆𝑟!
∆𝜆

=  
𝑟! − 𝑟!!!
𝐹𝑊𝐻𝑀 !

 (2) 

Where ∆ri /∆λ is the derivative and ∆ri is the change in reflectance, ∆λ is the change 248 
of wavelengths, and FWHM is the full width at half maximum for that wavelength 249 

 250 
Various targets (each having 10 to 30 pixels) were identified from Hyperion data using the 251 

Region of Interest (ROI) tool of ENVI [40]. The mean reflectance of the targets were calculated for 252 
152 calibrated bands of the Hyperion data. The calibrated bands consists of 5 pieces: 427 nm – 925 253 
nm; 973 nm – 1114 nm; 1175 nm – 1326 nm; 1497 nm – 1790 nm and 2032 nm – 2355 nm. The width 254 
for the local filtering was 30 nm.  255 

2.2.4. Rail Road Valley Playa (RRVP) PICS ‒ Surface Reflectance at a desert site 256 
RRVP is among the PICSs endorsed by the Committee on Earth Observing Satellites (CEOS) to 257 

serve as a standard reference for the post-launch calibration of space-based optical imaging sensors 258 
[41]. RRVP is located in a large, dry lakebed in central Nevada and has a dry climate, typical of the 259 
high desert of the western USA [42]. The site is characterized by high reflectance, relatively high 260 
spatial and temporal uniformity, high midday sun elevation, and minimal cloud cover. The surface 261 
layers and composition are relatively smooth and spatially homogeneous, consisting of compacted 262 
clay-rich lacustrine deposits [43]. More description of the site and detailed spectral evaluations are 263 
available in Scott et al. [42], Teillet et al. [43], and Czapla-Myers et al. [44,45]. Because of its large 264 
size, RRVP is used for sensors with larger footprints (1–10 km), and is automated with 265 
instrumentation used extensively for the vicarious calibration of terrestrial imaging sensors 266 
covering the VNIR and SWIR wavelength ranges [44,45]. 267 

The Hyperion time series collection at RRVP was processed following the procedures outlined 268 
in Campbell et al. [46]. Hyperion TOA radiances were converted to surface reflectance using the 269 
Atmospheric CORrection Now (ACORN) software [47] and the module designed for pushbroom 270 
imaging spectrometers with cross-track spectral calibration variation. According to the date of 271 
acquisition, apparent surface reflectance was derived using either mid-latitude summer or winter 272 
atmospheric models. To preserve the original spectral properties and variability, the images were 273 
not geographically or geometrically rectified.  This was valid as a prior study established that at 274 
RRVP, Moran I statistics vary between 0.81 and 0.95 across Hyperion’s spectral range (1 = strong 275 
positive spatial autocorrelation, 0 = spatially uncorrelated data), which was attributed to variation 276 
in soil moisture affects and differences in the mineral composition of the surface [46]. We used band 277 
subsetting to remove uncalibrated and overlapping bands, and bands adjacent to water absorption 278 
features, resulting in subsets having 171 bands (Table 4). 279 

Time series of Hyperion data were used to determine spectral stability during the period 280 
previous to the precession change beginning in 2011 or during the changing satellite precession.  281 
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Thirty-seven radiometrically corrected Level 1R images from 2001 – 2015 were converted to surface 282 
reflectance using the ACORN software. Mean reflectance and standard deviation (SD) were 283 
calculated for select wavelength bands (Figure 4). These wavelengths were chosen as representative 284 
of the spectral properties throughout the VNIR and SWIR wavelengths for RRVP. The mean was 285 
calculated with data from 2001 – 2008.  Twenty-three pre-precessional and fourteen 286 
post-precessional images (see Figure 1 for dates) were used for the statistics of the change as delta 287 
reflectance (∆p). 288 

Table 4. Subset of bands used in RRVP study 289 

Array	 Bands	 Wavelengths	(nm)	

VNIR	 8	-	57	(49)	 426	-	926	
SWIR1	 7	-	120	(41)	 993	-	1346	
SWIR2	 129	-	165	(36)	 1518	-	1800	
SWIR3	 179	-	224	(5)	 1942	-	2395	

Total	 (171)	 		
 290 

 291 
Figure 4. Mean reflectance and standard deviation for select wavelengths for the Rail Road Valley 292 
Playa (RRVP) site before late mission precession changes (2001-2008 data, n=15 images, ~10:05 am 293 
mean local time acquisition). 294 

2.2.5. Libya-4 PICS ‒ Hyperion time-series using different atmopheric correction models 295 
To test differences of various atmospheric correction techniques and potential impacts of using 296 

Hyperion for cross calibration, we used a time-series of surface reflectance data from 2004 ― 2016 297 
in the Libya-4 desert PIC site, which is commonly used as a calibration site for Earth observing 298 
sensors.  299 
Thirty-six images from WRS path 181, row 40 were co-registered. All data were nadir ±10 degrees 300 
and collected between May and September to reduce seasonal SZA effects. These data were 301 
atmospherically corrected to surface reflectance using ATREM, ACORN, and FLAASH [31,35,48].  302 
ATREM uses a radiation transport model based on 6S, whereas ACORN and FLAASH use a more 303 
complex radiation transport model that retrieves atmospheric properties from bands near 304 
absorption features [49,50].  All three models account for differences in the measured upwelling 305 
radiance from differences in solar irradiance due to different acquisition dates and times, and all 306 
models had similar parameters applied for the Libya-4 PICS.  Combined atmospheric model 307 



Remote Sens. 2016, 8, x FOR PEER REVIEW 10 of 19 

 

uncertainty was estimated using a quadrature statistic [51], expressed as the square root of the 308 
coefficient of variation of the sum of squares from each atmospheric correction approach.  309 

A digital terrain model was also generated for this site using same date cross-track 50cm 310 
panchromatic WorldView-1 and WorldView-2 stereo imagery to characterize terrain slope impacts 311 
to reflectance products. Greater than 50 tie points were used and the RMSE for the product was less 312 
than 3.5m with a resulting resolution of 2m. This was done because we wanted to see if SZA change 313 
from precession combined with large dune shadowing at the site effected the results. More 314 
information about how these data were processed is available in [52]. 315 

3. Results 316 

3.1. Park Falls, Wisconsin:  EO-1 ALI NDVI vs. Landsat NDVI 317 
ALI analysis was comprised of two parts.  First, we wanted to know the spectral difference 318 

between the calculated NDVI from the two sensors over the time series.  In the comparison of 319 
NDVI from ALI and Landsat, the stratified images by cover type using the NLCD, only the low 320 
intensity development class (class 22) showed much variance, which had larger NDVI differences 321 
(between 0.05 and 0.10 ∆ NDVI) than the others (see Figure 5). This difference may be attributed to 322 
a smaller sample size compared to the other land cover classes. Second, we wanted to identify 323 
changes in median ∆NDVI over time that occurred, possibly showing the manifestation of 324 
increasing differences in SZA due to orbital drift of EO-1.  However, we show that there was no 325 
systematic trend in ∆NDVI occurring since the onset of precession. In Fig. 5 for all classes, the 326 
median difference hovers above and below zero with no observable trend. We hypothesized that if 327 
precession was affecting ALI data quality that the differences would increase in either a positive or 328 
negative fashion over time. Not including the low intensity development class (class 22), the highest 329 
deviation was 0.05 NDVI, found in several classes and years, but all before precession started in 330 
2011. 331 

3.2. Howland Forest, Maine ‒ Hyperion NDVI comparison to MODIS NDVI 332 
Phenological changes in NDVI were compared between EO-1 Hyperion and MODIS surface 333 

reflectances at three flux tower sites (US-Ho1, US-Ho2 and US-Ho3) in the Howland Experimental 334 
Forest, Maine. NDVI maps were derived from EO-1 Hyperion images over the 6 km area 335 
surrounding the three Howland Forest flux tower sites across four seasons from spring (March 5, 336 
2014), summer (Aug. 12, 2014), fall (Sept. 22, 2008) and winter (Dec. 9, 2010). Figure 6 shows the 337 
expected NDVI seasonality, with both the early and late year observations of low NDVI and high 338 
mid-season NDVI responding to the presence of green leaves and higher photosynthesis. 339 

  For the areas around the three flux tower sites, NDVI was differenced between Hyperion 340 
and MODIS data (Figure 6, lower plot). Similar to other results, the NDVI difference is small (i.e. 341 
∆NDVI < 0.15) and does not increase over time although it varies across years. Most of the large 342 
NDVI differences (from 0.10 - 0.15) occur in US-Ho3 site (East Tower, Harvest Site), which is not as 343 
homogeneous as the other two flux tower sites.  344 

 345 
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 346 
Figure 5. Statistics for median NDVI difference between Landsat and ALI sensors, per six National 347 
Land Cover Database (NLCD) classes. Red line is median, blue box is quartiles, and black crosses 348 
are outliers. NDVI values were derived from Top of Atmosphere (TOA) reflectance. 349 

 350 

Figure 6. Upper chart: NDVI maps from EO-1 Hyperion images over the Howland Forest area in 351 
Maine across four seasons from: a) Spring; b) Summer; c) Fall; d) Winter. Three flux tower sites are 352 
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indicated with black squares.  Lower graph: NDVI difference between Hyperion and MODIS for 353 
the three flux tower sites in the Howland forest area of Maine from 2003 to 2014. 354 

3.3. BARC ‒ Hyperion surface reflectance derivative analysis  355 
At this USDA site, we chose targets with varying degrees of seasonal differences to determine 356 

if derivative analysis displays a consistent signal throughout the Hyperion time-series. The spectral 357 
reflectance and derivatives from four targets (corn field, evergreen trees, deciduous trees, and top 358 
of building) are shown in Figure 7 & 8. As can be seen in the figures, the corn field has a very 359 
different spectral reflectance between the five dates due to the differences in planting and 360 
harvesting schedules in those years. The Evergreen patch and the top of a building, not 361 
surprisingly, have a much more uniform reflectance among dates. The derivatives show the 362 
consistency between different dates for a target and keep different features for different targets.  363 

 364 
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Figure 7. Spectrum (top row) and 1st, 2nd, 3rd derivatives (rows 2 to 4) of a Corn field (column A) 365 
and Evergreen patch (column B). 366 

 367 
Figure 8. Spectrum (top row) and 1st, 2nd, 3rd derivatives (rows 2 to 4) of a deciduous patch 368 
(column C) and Rooftop (column D). 369 
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 370 

3.4. RRVP ‒ Desert site surface reflectance time series 371 
Similar to the ALI NDVI vs. Landsat NDVI study above, we wanted to look at deviations in 372 

reflectance of Hyperion data over time for a site with stable reflectance. Pre-precession means were 373 
calculated and differenced from subsequent years of acquisitions over the same target and 374 
wavelengths (Equation 3).  In the first few years of precession, reflectance values are lower than 375 
pre-precession (Figure 9). From 2014 to early-2015 the values fluctuate about the mean and then 376 
from early-2015 Hyperion reflectance values increase to stay consistently above the pre-precession 377 
mean. However, the difference in reflectance continues to be within ± 5 - 9% of the mean prior to ∆ 378 
precession. The regions of highest spectral stability (e.g, green, red edge, NIR) remain the same. 379 

 380 

Figure 9.  Change in reflectance anomaly (∆p) at select wavelengths.  A mean was established by 381 
averaging values from 2001-2008.  The dashed line above the bars shows the time of acquisitions 382 
and the key for wavelengths is presented in the lower right legend.  383 

(Ri = Rmean 2001-2008 - RDOY, 2009-2015), 

Where Ri is the differenced reflectance, Rmean is the calculated mean, 
and RDOY is the reflectance per each observation after 2008. 

(3) 

3.5. Libya-4 PICS ‒ Hyperion surface reflectance stability using three atmopheric correction models 384 
We studied Hyperion precession from 2004 through 2016 with three atmospheric correction 385 

algorithms to characterize temporal stability of surface reflectance products and to understand 386 
uncertainties introduced by terrain shadow in the Libya-PICS. Hyperion data were stable in most 387 
bands over this time period, independent of the atmospheric correction model used. However, the 388 
imagery degraded at different rates throughout the spectrum for the visible (VIS), NIR, infrared 389 
(IR), and SWIR between 2004 to 2016, as indicated through the several atmospheric correction 390 
techniques. The combined model variation expressed as a quadrature was within 10% for the VNIR 391 
and in most SWIR bands the variability was within 20%, excluding bands near atmospheric 392 
absorption features (Figure 10). The ATREM corrected images expressed the lowest change over 393 
time for the VNIR and IR, as described by the trend values (close to zero) and lowest CV.  Overall, 394 
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the CV was < 5% across the spectrum, except in bands adjacent to atmospheric absorption regions. 395 
No significant (p < 0.01) or rapid degradation was apparent for any spectral interval during the 396 
precession period for the three correction approaches. The quadrature values were similar for the 397 
entire dataset (Quadratures 2004-2016) as well as for the last five years of the mission (Quadratures 398 
2011-2016).  We found that locations having terrain slopes greater than 15° introduced a peak 399 
value in anomaly trends as compared to dune flats of 0 to 10°.  Trends progressively increased for 400 
slopes up to 15°, then oscillated 2 to 5% in the VIS and > 20% in the SWIR, due to Hyperion imaging 401 
both the illuminated and shaded portions of dunes. The BRDF information about large dunes in the 402 
Libya-4 PICS is important for cross-calibrating Earth observing sensors. 403 

 404 

    405 

Figure 10. Means of 172 calibrated Hyperion bands from 36 images acquired from 2004 to 2016 after 406 
use of 3 atmospheric correction models: (top row) least squares fit linear trend in surface reflectance; 407 
(bottom row) coefficient of variation (CV). The quadrature (combined uncertainty) is calculated as 408 
the square root of the sum of squares. Gray areas indicate atmospheric absorption bands [52].  409 

4. Discussion 410 
The catalyst for this study was EO-1’s declining orbit and this work evaluated how it affected 411 

its instrument’s data quality and stability though time. In general, we demonstrate that surface 412 
reflectance retrievals were not seriously affected during the late mission precession period, typically 413 
being within 5% for VIS and 10% longer wavelengths for most surfaces, although the Libya-4 PICS 414 
desert variation was slightly higher due mostly, we suspect, to large dunes casting larger shadows 415 
from increased SZA from earlier overpass times. Other land cover types, including croplands and 416 
deciduous forests, were shown to have differences in reflectance between dates, but showed 417 
consistency when looking at their derivatives. All land cover types that we looked at, however, did 418 
not show marked increase or decrease in NDVI over the full precession range of our time series. It 419 
should also be stated that we avoided high off-nadir sensor view angles when selecting our images 420 
to minimize variance due to view geometry differences. 421 

The effect of precession on other sensors has been studied and we can compare our results to 422 
theirs. Swinnen, et al.[22] measured orbital drift and its effects on Satellite Pour l’Observation de la 423 
Terre (SPOT) data, finding somewhat similar or slightly higher differences in spectral reflectance 424 
that ranged from 10% - 20% when in reference to another sensor, but the impact on NDVI was 425 
negligible.  We assume that the reason their study obtained slightly higher variances than ours 426 
was because the two SPOT sensors that were compared (i.e., VGT1 and VGT2) had differences in 427 
calibration accuracies, as well as slightly different spectral response functions    428 

This work provides insight on the limits of increasing SZAs on EO-1 surface reflectance data 429 
quality. This issue is important not only for the creation of consistent long-term satellite time series, 430 
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but also help to define issues in combining data from multiple satellites with different overpass 431 
times, as have been proposed for future satellite constellations, and to merge existing or past data 432 
collections. Atmospheric correction models account for differences in the measured upwelling 433 
radiance for different acquisition dates and times and results could differ if only TOA products are 434 
used.  Future work could study the limits of even earlier crossing times to see at what point the 435 
increased SZA starts to negatively affect data quality. Hagolle [53] found that the relative difference 436 
in reflectance values and NDVI increased moderately with increase in initial SZA up to 50°, but 437 
beyond this, an increase in SZA resulted in an exponential change in relative difference.  While 438 
this result is important, it was based on simulated SPOT data and only evaluated four multispectral 439 
bands.  Our study is current as of late-2016, when the minimum SZA reached 50° (see Fig. 3).   440 
Early in 2017, the last images were collected and the mission was decommissioned. At this point the 441 
minimum SZA was around 55°, preventing us from determining the effects on data as the sun 442 
approaches the horizon at overpass time.  443 

Nevertheless, the first space-based measurements of a large methane leak from the Aliso 444 
Canyon, California super emitter were captured by Hyperion in January 2016 under low winter sun 445 
angles, and later verified by aircraft observations, demonstrating that even a nearly invisible gas 446 
plume above a complex landscape could be detected from orbit with a spectrometer [54].  This 447 
opens new possibilities for future monitoring capabilities if NASA chooses to support a mission 448 
similar to the one identified by the National Research Council in the 2007 Decadal Survey for Earth 449 
Sciences, which defined a Pre-Phase-A mission, the Hyperspectral InfraRed Imager (HyspIRI). 450 

5. Conclusions  451 
In this study, multispectral and hyperspectral remote sensing imagery were evaluated from 452 

the EO-1’s two spectral imagers, ALI and Hyperion, in comparison with data from the Landsat and 453 
MODIS sensors. Our analyses were done at a mid-latitude mixed forest site, two desert PIC sites, a 454 
USDA agricultural research site, and a northern experimental forest. ALI NDVI was compared to 455 
Landsat NDVI, Hyperion reflectance was examined before and during orbital precession using 456 
time-series for Hyperion NDVI data compared to MODIS NDVI and using spectral derivative 457 
analyses. Additionally, we evaluated the role that different atmospheric correction algorithms had 458 
on time-series Hyperon imagery. We have shown in this study that the sensors onboard the EO-1 459 
satellite have produced robust products for scientific analysis of the Earth during its entire 16 year 460 
mission. This study took a multi-faceted approach to quantify EO-1 data quality and we 461 
determined that no marked decline exists for either ALI or Hyperion when compared with other 462 
highly calibrated and stable sensors in a diverse set of locations. The variability is typically within 463 
5% for the VNIR and within 10% for the SWIR wavelengths, excluding bands near atmospheric 464 
absorption features, which is in the range of previous EO-1 data quality estimates that were made 465 
before the satellite’s orbit started precession [3,12]. Lastly, it was found that this variability in 466 
retrieved surface reflectance is not seriously affected among three commonly employed 467 
atmospheric correction techniques. This is encouraging for time-series analysis, when it is often 468 
pertinent to correct for differing atmospheric conditions that may be present.  469 

It is important to note that these results are current as of mid-2016. Median overpass times will 470 
continue to get earlier and greater solar zenith angles will be experienced. In October 2016 the 471 
overpass time reached 8AM local time and the satellite started the decommission protocol, which 472 
will be completed in March 2017. In between that time users should be cautious when using EO-1 473 
data as data quality under these circumstances has not been evaluated. 474 
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Abbreviations 488 
The following abbreviations are used in this manuscript: 489 
 490 
ACORN: Atmospheric CORrection Now 491 
ALI: Advanced Land Imager 492 
ATREM: Atmosphere Removal  493 
BARC: Beltsville Agricultural Research Center 494 
BRDF: Bi-Directional Reflectance Distribution Function 495 
CEOS: Committee on Earth Observing Satellites 496 
CV: Coefficient of Variation 497 
EO-1: Earth Observing One 498 
ETM+: Enhanced Thematic Mapper plus 499 
FLAASH: Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 500 
TM: Thematic Mapper 501 
MODIS: Moderate Resolution Imaging Spectroradiometer 502 
NDVI: Normalized Difference Vegetation Index 503 
NIR: Near Infrared 504 
PICS: Pseudo-Invariant Calibration Site 505 
RRVP: Rail Road Valley Playa 506 
SNR: Signal to Noise Ratio 507 
SWIR: Short Wave Infrared  508 
SZA: Solar Zenith Angle 509 
TOA: Top of Atmosphere 510 
USGS: United States Geological Survey  511 
VNIR: Visible Near Infrared 512 
WRS: Worldwide Reference System 513 
 514 
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